বিনিময় বৈশিষ্ট্য
গণিতবিদ্যায়, কোন বাইনারি অপারেশানকে তখনই বিনিময় বলা হবে যখন তার অপারেন্ডগুলোর জায়গা পরিবর্তনের কারণে ফল এর কোন পরিবর্তন হবে না। এটি অনেক বাইনারি অপেরাশন এর প্রাথমিক ভিত্তি বৈশিষ্ট্য এবং অনেক গাণিতিক প্রমাণ এর উপর নির্ভর করে। সর্বাধিক পরিচিত বিশিষ্টের যা এই নামের মধ্যে বলা হয়েছেঃ "৩ + ৪ = ৪ + ৩" বা "২ × ৫ = ৫ × ২", এছাড়াও এই বিশিষ্টটি আরও বড় কোন গাণিতিক সমস্যা সমাধানে ব্যবহার করা যেতে পারে। এই নামটি দরকার ছিল কারণ আরও অনেক অপেরাশন আছে যেমন ভাগ ও বিয়োগ, যাদের এই বিশিষ্টটি নাই, এই অপেরাশনগুলো বিনিময় যোগ্য না। তাই এদের অবিনিময় যোগ্য অপেরাশন বলা হয়। অপেরাশনের সাধারণ ধারণা যেমন কোন সংখ্যার গুণ ও যোগ হল বিনিময়যোগ্য এবং অনেক বছর আগ থেকেই এই ধারনার প্রয়োগ রয়েছে। যদিও এই ১৯ শতকের আগ পর্যন্ত এর ধারনার কোন নাম ছিলোনা, যখন গণিতবিদ্যাকে বিধিবদ্ধ করা শুরু হয়েছিল।[১][২] বাইনারি সম্পর্কগুলোর মধ্যে অনুরুপ সম্পর্ক বিদ্যমান; একটি বাইনারি সম্পর্ককে সদৃশ বলা হবে তখনই যখন তা অপারেন্ড এর ক্রমকে অগ্রাহ্য করবে। উদাহরণস্বরূপ, সমতা হল সেটাই যাতে দুটি সদৃশ গাণিতিক বস্তুর ক্রমকে অগ্রাহ্য করা হয়। [৩]
সাধারণ ব্যবহার
সম্পাদনাবিনিময় বৈশিষ্ট্য এমন একটি বৈশিষ্ট্য যা সাধারনত বাইনারি অপেরাশন ও ফাংশনসমূহের সাথে সম্পর্কযুক্ত। যদি কোন বাইনারি অপেরাশন একজড়া উপাদানকে বিনিময় বৈশিষ্ট্য হিসেবে ধরা হয় তবে ওই জোড়া উপাদানকে বিনিময় করতে বলা হয়।
গাণিতিক সংজ্ঞা
সম্পাদনাবিনিময় শব্দটি বিভিন্ন সংশ্লিষ্ট অর্থে ব্যবহার হয়। [৪][৫]
- একটি সেট S এর মধ্যে একটি বাইনারি অপেরাশন কে বিনিময় বলা হবে যদিঃ
- সব এর জন্য সত্য হয়
- কেউ বলে যে x কে y এর সাথে বিনিময় করা যাবে যদিঃ
- একটি বাইনারি ফাংশন: কে বিনিময় বলা হবে যদিঃ
- সব এর জন্য সত্য হয়
উদাহরণসমূহ
সম্পাদনাদৈনন্দিন জীবনে বিনিময় বিশিষ্টের ব্যবহার
সম্পাদনা- বিনিময় বৈশিষ্ট্য অনেকটা মোজা পড়ার মত, যেহেতু কোন মোজাটি আগে পড়ব সেটা গুরুত্বপূর্ণ না। যেভাবেই হোক, ফলটি (উভয় মোজা পরে থাকার মত), একই হবে। বিপরীতভাবে, আন্ডারওয়্যার এবং ট্রাউজার্স পড়ে থাকা কিন্তু বিনিময় নয়।
- আমরা যখন কোন বস্তু ক্রয় করি তখন তার দাম দিতে গিয়ে বিনিময় বৈশিষ্ট্য পরিলক্ষিত হয়। সেখানে এটা কোন বেপার না যে কোন জিনিসের দাম তা আগে দিচ্ছি, মোট দাম সব সময় একই হবে।
গণিতে বিনিময় বিশিষ্টের ব্যবহার
সম্পাদনাবাইনারি অপেরাশনে বিনিময়ের দুটি চিরাচরিত উদাহরণ হলঃ
- বাস্তব সংখ্যার যোগফল বিনিময়যোগ্য, যদি
- সব এর জন্য সত্য হয়।
উদাহরণস্বরূপ, ৫ + ৪ = ৪ + ৫, উভয় রাশির যোগফল সমান ৯
- বাস্তব সংখ্যার গুনফল বিনিময়যোগ্য, যদি
- সব এর জন্য সত্য হয়।
উদাহরণস্বরূপ, ৫ x ৪ = ৪ x ৫, উভয় রাশির গুনফল সমান ১৫
- কিছু বাইনারি ট্রুথ ফাংশনও বিনিময়যোগ্য, যেহেতু অপেরান্ডের ক্রম পরিবর্তন হলেও ট্রুথ টেবিলে ফাংশনের কোন পরিবর্তন হয় না।
উদাহরণস্বরূপ, যৌক্তিক দ্বিশর্তাধীন ফাংশন p ↔ q, q ↔ p এর সমতুল্য। এই ফাংশনটিকে অন্যভাবেও লেখা যায়, যেমন, p IFF q বা p ≡ q, অথবা Epq
- সর্বশেষ উদাহরণটি হল ট্রুথ ফাংশন থেকে নেয়া সবচেয়ে সংক্ষিপ্ত নোটেশন, সেটি হল ষোলটি সম্ভাব্য বাইনারি ট্রুথ ফাংশনের মধ্যে আটটিই হল বিনিময়জজ্ঞঃ Vpq = Vqp; Apq (OR) = Aqp; Dpq (NAND) = Dqp; Epq (IFF) = Eqp; Jpq = Jqp; Kpq (AND) = Kqp; Xpq (NOR) = Xqp; Opq = Oqp
- বাইনারি ফাংশনের বিনিময় বিশিষ্টের যোগফল ও গুনফলসহ আপর উদাহরণগুলো হল জটিল সংখ্যা, যোগফল এবং ভেক্টরের স্কেলার গুণন, সেটের ছেদ এবং মিলন।
দৈনন্দিন জীবনে অবিনিময় বিশিষ্টের ব্যবহার
সম্পাদনা- একত্রীকরণ, যা স্ট্রিং ক্যারেক্টার কে জোড়া দেওয়ার কাজ করে, এটি একটি অবিনিময় বৈশিষ্ট্য। উদাহরণস্বরূপ,
- কাপড় ধয়া ও শুকানো অবিনিময় বৈশিষ্ট্যের সদৃশ। আগে কাপড় ধোয়া ও পড়ে শুকানো যে ফল দেয়, আগে কাপড় শুকানো ও পড়ে ধোয়া বিপরীত বা অন্য ফল দেয়।
- কোন একটি বইকে তার লম্ব অক্ষের সাপেক্ষে ৯০° ঘুরিয়ে আবার তার ভুমির সাপেক্ষে ৯০° ঘুরালে যে ফল পাওয়া যাবে, তার বিপরীত ক্রমে যদি এই কাজটি করা হয় একই ফল আসবে না।
- Rubik's Cubeরুবিক্স কিউব ঘুরানোও অবিনিময়। এটিকে গ্রুপ তত্ত্ব ব্যবহার করা যেতে পারে।
- চিন্তার প্রক্রিয়াগুলি অবিনিময়যোগ্য: কোন একজন মানুষকে যদি প্রশ্ন (A) করার পর প্রশ্ন (B) করলে যে উত্তর দিবে, তাকে যদি প্রশ্ন (B) করার পর প্রশ্ন (A) করা হয় তার উত্তরে পরিবর্তন আসবে, কারণ প্রশ্ন জিজ্ঞাসা তার মধ্যে মনস্তাত্ত্বিক পরিবর্তন আনতে পারে।
গণিতে অবিনিময় বিশিষ্টের ব্যবহার
সম্পাদনাকিছু অবিনিময়যোগ্য বাইনারি অপেরাশনঃ [৬]
বিয়োগ ও ভাগ
সম্পাদনাবিয়োগ হল অবিনিময় বৈশিষ্ট্য, যেহেতু,
ভাগ হল অবিনিময় বৈশিষ্ট্য, যেহেতু,
ট্রুথ ফাংশনসমূহ
সম্পাদনাকিছু বাইনারি ট্রুথ ফাংশনও অবিনিময়যোগ্য, যেহেতু অপেরান্ডের ক্রম পরিবর্তন হলে ট্রুথ টেবিলে ফাংশনের পরিবর্তন হয়। উদাহরণস্বরূপ, f (A, B) = A Λ ¬B (A AND NOT B) এবং f (B, A) = B Λ ¬A এর ট্রুথ টেবিল হলঃ
A B f (A, B) f (B, A) F F F F F T F T T F T F T T F F
আটটি অবিনিময়যোগ্য ফাংশনের জন্য, Bqp = Cpq; Mqp = Lpq; Cqp = Bpq; Lqp = Mpq; Fqp = Gpq; Iqp = Hpq; Gqp = Fpq; Hqp = Ipq.[৭]
ম্যাট্রিক্সের গুণ
সম্পাদনাম্যাট্রিক্সের গুণন প্রায় সব সময় অবিনিময়যোগ্য। উদাহরণস্বরূপঃ
ভেক্টর গুণন
সম্পাদনাত্রিমাত্রিকভাবে যে কোন দুটি ভেক্টর গুণন (বা ক্রস গুণন) হল বিপরীত-বিনিময়যোগ্যঃ তার মানে, b × a = −(a × b)
ইতিহাস ও ব্যাকরণ
সম্পাদনাআদিকাল থেকে বিনিময় বৈশিষ্ট্যের ব্যবহারের নমুনা পাওয়া যায়। মিশরীয়রা গুনফল বের করার ক্ষেত্রে গুণনকে সহজিকরন করার জন্য বিনিময় বৈশিষ্ট্যের ব্যবহার করত।[৮][৯] ইউক্লিড গুণনের ব্যবহার সম্পর্কে জানত বলে তার বই এলিমেন্টস থেকে ধারণা পাওয়া যায়।[১০] বিনিময় বৈশিষ্ট্যের আনুষ্ঠানিক ব্যবহার ১৮ শতকের শেষ ও ১৯ শতকের শুরুর দিক থেকে আরম্ভ হয়। তার পর থেকে গণিতবিদরা এই ফাংশনের তত্ত্ব নিয়ে কাজ শুরু করেন। বর্তমানে বিনিময় বৈশিষ্ট্য অতিপরিচিত ও গণিতবিদ্যার বিভিন্ন শাখার ভিত্তি হিসেবে ব্যবহার করা হয়।
বিনিময় শব্দটি প্রথম পাওয়া যায় ১৮১৪ সালে ফ্রাঙ্কো সারভইস এর একটি আত্মজীবনীতে। [১][১১] সেই সময় তিনি যে ফাংশনটির জন্য বিনিময় শব্দটি ব্যবহার করেছিলেন সেটিই এখন নিনিময় ফাংশন নামে পরিচিত। শব্দটি দুটি ফরাসি শব্দ থেকে এসেছে, একটি হল কোম্যুতে যার অর্থ "প্রতিষ্ঠাপিত করা বা স্থান পরিবর্তন" এবং এর বিভক্তি হিসেফবে আছে আতিভ যার অর্থ "কোন কিছু করার প্রবণতা" অতএব এদের মিলিত অর্থ হল "প্রতিস্থাপন বা স্থান পরিবর্তনের প্রবণতা"। ১৮৩৮ সালে এই শব্দটি ইংরেজিতে যুক্ত হয়,[২] ট্রাঞ্জেকশন অফ দা রয়্যাল সোসাইটি অফ এডিনবার্গ, ডুঙ্কান ফ্রাকুহারসন গ্রিজোরি নিবন্ধটিকে "অন দা রিয়াল ন্যাচার অফ সিম্বোলিক অ্যালজেব্রা" নামে ১৮৪০ সালে প্রকাশিত করার সময় এটি ব্যবহার করে।[১২]
প্রস্তাবিত যুক্তি
সম্পাদনাপ্রতিস্থাপন নিয়ম
সম্পাদনাট্রুথ-ফাংশনের প্রস্তাবিত যুক্তি হল, বিনিময়[১৩][১৪] বা বিনিময় যোগ্যতা[১৫] দুটি গ্রহণযোগ্য প্রতিস্থাপন নিয়মকে বোঝায়। এই নিয়মগুলো যুক্তিগত প্রমানের ক্ষেত্রে যুক্তিগত রাশির মধ্যে সমতুল্য চলকদের পক্ষান্তরিত করার অনুমতি দেয়। নিয়ম গুলো হলঃ
এবং
যেখানে " " হল একটি মেটালজিক্যাল সিম্বল যা "যা কোন প্রমানের প্রতিস্থাপনকে" প্রতিনিধিত্ব করে।
সত্য কার্যকরী সংযোগ
সম্পাদনাবিনিময় যোগ্যতা হল ট্রুথ ফাংশনের সমতুল্য যুক্তির কিছু যুক্তিগত সংযোজন। নিচের যুক্তিগত সাম্যতাগুলো যা প্রদর্শন করে তা হল বিনিময় যোগ্যতার নির্দিষ্ট সংযোগকারীর জন্য কিছু বৈশিষ্ট্যঃ
- সংযোগের বিনিময় যোগ্যতা
- বিস্লেশের বিনিময় যোগ্যতা
- সংশ্লেষের বিনিময় যোগ্যতা (বিন্যাস আইনও বলা হয় )
- সমানতার বিনিময় যোগ্যতা ( সম্পূর্ণ বিনিময়ের সমানতার আইন বলা হয়)
সেট তত্ত্ব
সম্পাদনাগ্রুপ বা সেট তত্ত্বে, অনেক বীজগাণিতিক কাঠামোকে বিনিময় যোগ্য বলা হয়, যখন কোন নির্দিষ্ট অপেরান্ড বিনিময় বৈশিষ্ট্য প্রকাশ করে। গণিতবিদ্যার উচু শাখাগুল, যেমন বিশ্লেষণ এবং Linear algebraরৈখিক বীজগণিতে বিনিময় যোগ্যতা সুপরিচিত অপারেশনগুলোর (যেমন বাস্তব ও জটিল সংখ্যার যোগ এবং গুণন) প্রমাণের জন্য প্রায়শই ব্যবহার করা হয় বা (বা নিখুঁতভাবে অনুমান করা হয়)।[১৬][১৭][১৮]
গাণিতিক কাঠামো এবং বিনিময়যোগ্যতা
সম্পাদনা- কোন বিনিময় যোগ্য উপদল হল মোট, সহচরী ও বিনিময় বৈশিষ্ট্য সম্পন্ন একটি সুশৃঙ্খল সেট।
- যদি কোন অপারেশনে একটি অতিরিক্ত সমানতা উপাদান থাকে, তবে আমাদের একটি বিনিময় যোগ্য মনোআইডি আছে।
- একটি এবিলিয়ান দল বা বিনিময়যোগ্য দল হল একটি দল যার দলগত অপেরাশন হল বিনিময়যোগ্য।[১৭]
- একটি বিনিময় চক্র হল এমন একটি চক্র যার গুণন হল বিনিময়যোগ্য (কোন চক্রের সংযোজনও বিনিময়যোগ্য)।[১৯]
- কোন একটি ক্ষেত্রতে যোগ ও গুণ হল বিনিময়যোগ্য।[২০]
সংশ্লিষ্ট বৈশিষ্ট্য
সম্পাদনাযৌথতা
সম্পাদনাযৌথতা বৈশিষ্ট্যটি বিনিময় বিশিষ্টের সাথে ঘনিষ্ঠ ভাবে সম্পর্কিত। কোন একটি এক্সপ্রেশনের যৌথতা বৈশিষ্ট্য হল কোন অপেরাটরের একই অবস্থানে দুই বা ততোধিক ঘটনা যার অপেরাশনের ক্রম তার ফলকে প্রভাবিত করে না, যতক্ষণ পর্যন্ত না তাদের পদের ক্রমের পরিবর্তন হয়। অপরদিকে বিনিময় বিশিষ্টের ক্ষেত্রে পদের ক্রমের পরিবর্তন ফলকে প্রভাবিত করে না।
দৈনন্দিন জীবনে যে সব বিনিময় বৈশিষ্ট্য ব্যবহার করা হয় তার বেশির ভাগই যৌথতা। কিন্তু বিনিময়যোগ্যতা পরোক্ষভাবে যৌথতা নয়। তার একটি বিপরিত-উদাহরণ হল একটি ফাংশন
যা পরিষ্কারভাবে বিনিময় যোগ্য (x ও y এর স্থান পরিবর্তনে ফলের মধ্যে কোন আসবে না), কিন্তু এটি যৌথতাযোগ্য নয় (যেহেতু, উদাহরণস্বরূপ, but )
কমুটেটিভে নন-এসোসিয়েটিভ মাগমস এ ধরনের আরও উদাহরণ খুজে পাওয়া যেতে পারে।
বিভাজক
সম্পাদনাপ্রতিসাম্যতা
সম্পাদনাকিছু প্রতিসাম্যতা সরাসরি বিনিময়যোগ্য। যখন কোন বিনিময়যোগ্য অপেরাটরকে বাইনারি ফাংশনে লেখা হয় তখন যে ফাংশনটি পাওয়া যায় তা y = x লাইনটি মেনে চলে। ধরি, যদি f একটি সংযোজন ফাংশন (একটি বিনিময়যোগ্য অপেরাশন) f(x,y) = x + y হয়, তবে f একটি প্রতিসাম্য ফাংশন। যা ডানপাশের ছবিটিতে দ্যাখা যাচ্ছে।
সম্পর্কের ক্ষেত্রে, প্রতিসাম্যতার সম্পর্ক অনেকটা বিনিময় অপেরাশনের মত। এখানে যদি R এর সম্পর্কটি প্রতিসাম্য হয় তবে,
কোয়ান্টাম ম্যাকানিক্সে অহিসাবযোগ্য অপারেটরসমূহ
সম্পাদনাস্রডিঞ্জার এর প্রতিয়মান করা কোয়ান্টাম ম্যাকানিক্সে, বাস্তব চলককে লিনিয়ার অপেরাটর দ্বারা প্রকাশ করা হয়, যেমন, x (x দ্বারা গুণ) এবং । and (এদের গুণন অপেরাটর বলে) এর সংযোজনকে বিবেচনা করলে একমাত্রিক তরঙ্গ ফাংশন : এর মধ্যে এই দুটি অপেরাটরকে যেভাবে দেখা যাচ্ছে সেভাবে বিনিময় করা যাবে নাঃ
হেইজেরবারগ এর অনিশ্চয়তা নীতি অনুসারে, যদি দুটি অপেরাটরকে একজোড়া চলক দ্বারা প্রকাশ করা হয় যা বিনিময় করা যায় না, তবে চলক জোড়া পরস্পর পরস্পরের পরিপুরক। তার মানে হল, তাদের মান একসাথে বের করা যাবে না এবং তা নিখুঁতভাবে জানা যাবে না। উদাহরণস্বরূপ, কোন একটি কণার X অক্ষে অবস্থান ও রৈখিক ভরবেগ যথাক্রমে ও দ্বারা প্রকাশ করা হয় (এখানে হল সংখিপ্ত প্লাঙ্ক ধ্রুবক)। এই উদাহরণটি বাদে বাকীদের জন্য প্রযোজ্য, তার যদি অপেরাটরটি বিনিময় করা না যায় এবং তার বাস্তব অর্থ হল যেকোনো দিকে তার অবস্থান ও রৈখিক ভরবেগ পরস্পর পরস্পরের পরিপুরক।
টীকা
সম্পাদনা- ↑ ক খ Cabillón and Miller, Commutative and Distributive
- ↑ ক খ Flood, Raymond; Rice, Adrian; Wilson, Robin, সম্পাদকগণ (২০১১)। Mathematics in Victorian Britain। Oxford University Press। পৃষ্ঠা 4।
- ↑ এরিক ডব্লিউ. ওয়াইস্টাইন সম্পাদিত ম্যাথওয়ার্ল্ড থেকে "Symmetric Relation"।
- ↑ Krowne, p.1
- ↑ Weisstein, Commute, p.1
- ↑ Yark, p.1.
- ↑ Jozef Maria Bochenski (1959), Precis of Mathematical Logic, rev., Albert Menne, ed. and trans., Otto Bird, New York: Gordon and Breach, Part II, Sec. 3.32, "16 dyadic truth functors", (truth tables), p. 11.
- ↑ Lumpkin, p.11
- ↑ Gay and Shute, p.?
- ↑ O'Conner and Robertson, Real Numbers
- ↑ O'Conner and Robertson, Servois
- ↑ D. F. Gregory (১৮৪০)। "On the real nature of symbolical algebra"। Transactions of the Royal Society of Edinburgh। 14: 208–216।
- ↑ Moore and Parker
- ↑ Copi, Irving M.; Cohen, Carl (২০০৫)। Introduction to Logic। Prentice Hall।
- ↑ Hurley, Patrick (১৯৯১)। A Concise Introduction to Logic 4th edition। Wadsworth Publishing।
- ↑ Axler, p.2
- ↑ ক খ Gallian, p.34
- ↑ p. 26,87
- ↑ Gallian p.236
- ↑ Gallian p.250
তথ্যসূত্র
সম্পাদনাবইসমূহ
সম্পাদনা- Axler, Sheldon (১৯৯৭)। Linear Algebra Done Right, 2e। Springer। আইএসবিএন 0-387-98258-2।
- Abstract algebra theory. Covers commutativity in that context. Uses property throughout book.
- Copi, Irving M.; Cohen, Carl (২০০৫)। Introduction to Logic। Prentice Hall।
- Gallian, Joseph (২০০৬)। Contemporary Abstract Algebra, 6e। Boston, Mass.: Houghton Mifflin। আইএসবিএন 0-618-51471-6।
- Linear algebra theory. Explains commutativity in chapter 1, uses it throughout.
- Goodman, Frederick (২০০৩)। Algebra: Abstract and Concrete, Stressing Symmetry, 2e। Prentice Hall। আইএসবিএন 0-13-067342-0।
- Abstract algebra theory. Uses commutativity property throughout book.
- Hurley, Patrick (১৯৯১)। A Concise Introduction to Logic 4th edition। Wadsworth Publishing।
নিবন্ধ
সম্পাদনা- https://web.archive.org/web/20070713072942/http://www.ethnomath.org/resources/lumpkin1997.pdf Lumpkin, B. (1997). The Mathematical Legacy Of Ancient Egypt - A Response To Robert Palter. Unpublished manuscript.
- Article describing the mathematical ability of ancient civilizations.
- Robins, R. Gay, and Charles C. D. Shute. 1987. The Rhind Mathematical Papyrus: An Ancient Egyptian Text. London: British Museum Publications Limited. আইএসবিএন ০-৭১৪১-০৯৪৪-৪
- Translation and interpretation of the Rhind Mathematical Papyrus.
অনলাইন সম্পদসমূহ
সম্পাদনা- Hazewinkel, Michiel, সম্পাদক (২০০১), "Commutativity", Encyclopedia of Mathematics, Springer Science+Business Media, আইএসবিএন 978-1-55608-010-4
- Krowne, Aaron, Commutative at PlanetMath, Accessed 8 August 2007.
- Definition of commutativity and examples of commutative operations
- এরিক ডব্লিউ. ওয়াইস্টাইন সম্পাদিত ম্যাথওয়ার্ল্ড থেকে "Commute"।, Accessed 8 August 2007.
- Explanation of the term commute
- Yark. Examples of non-commutative operations at PlanetMath, Accessed 8 August 2007
- Examples proving some noncommutative operations
- O'Conner, J J and Robertson, E F. MacTutor history of real numbers, Accessed 8 August 2007
- Article giving the history of the real numbers
- Cabillón, Julio and Miller, Jeff. Earliest Known Uses Of Mathematical Terms, Accessed 22 November 2008
- Page covering the earliest uses of mathematical terms
- O'Conner, J J and Robertson, E F. MacTutor biography of François Servois ওয়েব্যাক মেশিনে আর্কাইভকৃত ২ সেপ্টেম্বর ২০০৯ তারিখে, Accessed 8 August 2007
- Biography of Francois Servois, who first used the term