মধ্যক একটি ধারণা যা সংখ্যাতত্ত্বে সচরাচর ব্যবহৃত হয়। যদি এক প্রস্থ সংখ্যাকে মানানুক্রমিকভাবে সাজানো হয় তবে কেন্দ্রীয় সংখ্যাটিই হবে মধ্যক যার ওপরে থাকবে বড় মানের সংখ্যাগুলো এবং নিচে থাকবে ছোট সংখ্যাগুলো। ধরা যাক একটি পাড়ায় সাতজন বালক আছে যাদের বয়স ১৫, ৬, ১৪, ৮, ১০, ১৩ এবং ৯। মানানুক্রমে বয়সের উপাত্তটি হবে ৬, ৮, ৯, ১০, ১৩, ১৪ এবং ১৫ বৎসর। এ ক্ষেত্রে মধ্যক সংখ্যা হলো ১০।

মধ্যক নির্ণয়

সংজ্ঞা

সম্পাদনা

পরিসংখ্যান এবং সম্ভাবনা তত্ত্বে, মধ্যক হলো এমন একটি সংখ্যা, যা নমুনা, গণসমষ্টি বা বিন্যাসের সব সংখ্যাগুলিকে সমান দুটিভাগে ভাগ করে - এক ভাগে থাকে সেই সংখ্যা অপেক্ষা বড় মানগুলি এবং অপর ভাগে থাকে সেই সংখ্যা অপেক্ষা ছোট মানগুলি। এই দুটিভাগে সমান সংখ্যক উপাত্ত থাকে।

সসীম সংখ্যক উপাত্ত থেকে মধ্যক গণনা করতে হলে, প্রথমে সংখ্যাগুলোকে ছোট থেকে বড় মানের ক্রমানুসারে সাজিয়ে নিয়ে তারপর ঠিক মাঝের মানটিকে মধ্যক হিসেবে নির্বাচিত করতে হবে। জোড় সংখ্যক উপাত্তের ক্ষেত্রে কোনো মধ্যবর্তী মান পাওয়া যাবে না। সেক্ষেত্রে মধ্যক হবে মধ্যবর্তী দুটি মানের গড়। বর্ণিত সাধারণ পদ্ধতির মাধ্যমে গণনা করলে, সসীম উপাত্তের ক্ষেত্রে মধ্যক সর্বদাই অদ্বিতীয় একটি সংখ্যা।

উপযোগিতা

সম্পাদনা

মধ্যক গড়-এর মতই কেন্দ্রীয় প্রবনতার পরিমাপক। কিন্তু বিন্যাসে বঙ্কিমতা থাকলে, বা বহিষ্কমানের উপস্থিতি অনুমিত হলে বা বিন্যাসের সর্বোচ্চ মান অজানা থাকলে কেন্দ্রীয় প্রবনতার পরিমাপক হিসেবে গড় অপেক্ষা মধ্যককেই শ্রেয় বলে গণ্য করা হয়। সমস্যা হলো তাত্ত্বিকভাবে মধ্যক গড়-এর মতন সুবিধাজনক নয়।gjjvfcbচসঃঠনঃটঠব

প্রকাশ

সম্পাদনা

  চলকের মধ্যককে প্রকাশ করা হয় এভাবে -   বা  

বিক্ষিপ্ততার পরিমাপক

সম্পাদনা

যখন মধ্যককে কেন্দ্রীয় প্রবনতার পরিমাপক হিসেবে ব্যবহার করা হয়, তখন বিক্ষিপ্ততার পরিমাপক হিসেবে ভেদাঙ্ক-এর পরিবর্তে বিস্তার বা আন্তঃচতুর্থক বিস্তার ব্যবহৃত হয়।

সম্ভাবনা বিন্যাসের মধ্যক

সম্পাদনা

অবিচ্ছিন্ন বা বিচ্ছিন্ন উভয় ক্ষেত্রে, একটি দৈব চলকের ক্রমযোজিত বিন্যাস অপেক্ষক যদি   হয়, তবে মধ্যক   নিম্নের অসমতাকে মেনে চলে -

 

বা

 

অবিচ্ছিন্ন দৈব চলকের সম্ভাবনা ঘনত্ব অপেক্ষক যদি   হয়, তখন

 

গ্রন্থপঞ্জি

সম্পাদনা
  • Brown, George W. ”On Small-Sample Estimation.” The Annals of Mathematical Statistics, Vol. 18, No. 4 (Dec., 1947), pp. 582–585.
  • Lehmann, E. L. “A General Concept of Unbiasedness” The Annals of Mathematical Statistics, Vol. 22, No. 4 (Dec., 1951), pp. 587–592.
  • Allan Birnbaum. 1961. “A Unified Theory of Estimation, I”, The Annals of Mathematical Statistics, Vol. 32, No. 1 (Mar., 1961), pp. 112–135
  • van der Vaart, H. R. 1961. “Some Extensions of the Idea of Bias” The Annals of Mathematical Statistics, Vol. 32, No. 2 (Jun., 1961), pp. 436–447.
  • Pfanzagl, Johann; with the assistance of R. Hamböker (১৯৯৪)। Parametric Statistical Theory। Walter de Gruyter। আইএসবিএন 3-11-01-3863-8  অজানা প্যারামিটার |1= উপেক্ষা করা হয়েছে (সাহায্য)

বহিঃসংযোগ

সম্পাদনা