কার্যকর ভর (কঠিন-অবস্থার পদার্থবিদ্যা)

যখন একটি কণা কোন বলের প্রভাবে সাড়া দেয় অথবা তাপীয় বন্টনে যখন এটি তার স্বরূপ অন্য কোন কণার সাথে ক্রিয়া করে, তখন যে ভর আছে বলে প্রতীয়মান হয় তাকে সলিড স্টেট পদার্থবিদ্যায় কণার কার্যকর ভর( m* প্রতীক দ্বারা প্রকাশিত) বলে। কঠিন পদার্থের ব্যান্ড তত্ত্ব অনুসারে, ল্যাটিস দূরত্বের চেয়ে বড় দূরত্বের ক্ষেত্রে পর্যাবৃত্ত বিভবে কণার চলন শূন্য মাধ্যমে তার চলন থেকে ভিন্নতর হয়। কার্যকর ভর এমন একটি ভর যা দিয়ে মুক্ত কণার ক্ষেত্রে ব্যান্ড স্ট্রাকচারকে সহজরূপ প্রদান করা হয়। কিছু পদার্থের ক্ষেত্রে কার্যকর ভরকে পদার্থের একটি ধ্রুবক বলে বিবেচনা করা হয়। সাধারণত কি কারণে ব্যবহার করা হচ্ছে তার উপর কার্যকর ভর নির্ভর করে এবং অনেকগুলো ফ্যাক্টর এর সাথে সাথে এর পরিবর্তন ঘটে থাকে।

কঠিন পদার্থে ইলেকট্রন বা ইলেকট্রন হোলের ক্ষেত্রে, কার্যকর ভরকে ইলেকট্রনের স্থির ভর, me (9.11×10−31 kg) এর এককে প্রকাশ করা হয়। এই এককে এর মান ০.০১ থেক ১০ গুণ হয়ে থাকে, কিছুক্ষেত্রে তা অনেক বেশি বা কমও হতে পারে যেমন- ভারী ফার্মিয়ন উপাদানে ১০০০ গুণ পর্যন্ত, গ্রাফিনের ক্ষেত্রে তা শুণ্য থেকে তা অসীম পর্যন্ত হতে পারে। সাধারণভাবে দেখলে ইলেকট্রনের কার্যকর ভরকে গুরুত্বপূর্ণ মূল নির্ণায়ক হিসেবে দেখা হয়, কারণ তা সৌরকোষের দক্ষতা থেকে শুরু করে সমন্বিত বর্তনীর গতিসহ প্রায় সকল কঠিন পদার্থের নির্ণয়যোগ্য ধর্মগুলোকে প্রভাবিত করে।

সরল ক্ষেত্রঃ পরাবৃত্তিক, আইসোটোপিক বিচ্ছুরণ সম্পর্ক

সম্পাদনা

অনেক অর্ধপরিবাহী ( যেমন- জার্মেনিয়াম, সিলিকন, গ্যালিয়াম আর্সেনাইড প্রভৃতি) পদার্থে যোজ্যতা ব্যান্ড এর উচ্চতর শক্তি এবং কিছু অর্ধপরিবাহীর (যেমন-গ্যালিয়াম আর্সেনাইড) পরিবাহী ব্যান্ডের নিম্নতম শক্তিতে ব্যান্ড স্ট্রাকচার E(k) কে স্থানীয়ভাবে অনুমান করা যায় এভাবে  

যেখানে, E(k) হল ওই ব্যান্ডে তরঙ্গভেক্টর k এ ইলেকট্রন এর শক্তি, E0 হল একটি ধ্রুবক যা ওই ব্যান্ডে শক্তির সীমা নির্দেশ করে এবং m* হল একটি ধ্রুবক (কার্যকর ভর)।

যতক্ষণ পর্যন্ত ইলেকট্রনের শক্তি উপরে উল্লিখিত সীমা অতিক্রম না করে ততক্ষণ পর্যন্ত এই ব্যান্ডগুলোর ইলেকট্রনগুলো ভিন্ন একটি ভর নিয়ে মুক্ত ইলেকট্রন এর মত আচরণ করে। ফলে ড্রুড মডেলের মত মডেল গুলোতে ইলেকট্রনের ভরকে কার্যকর ভর দিয়ে প্রতিস্থাপিত করতে হয়।

ব্যান্ড বক্ররেখাটি যখন নিচের দিকে নামতে থাকে তখন কার্যকর ভর ঋণাত্মক হয়ে যায়,যা একটি উল্লেখযোগ্য বৈশিষ্ট্য। ঋণাত্মক ভরের কারণে এই ইলেকট্রনগুলো তড়িৎ ও চৌম্বক ক্ষেত্রে স্বাভাবিক অবস্থার উল্টোদিকে গতি লাভ করে এবং ঋণাত্মক আধান সত্ত্বেও উল্টো ধারকরেখা বরাবর চলে। এটি অর্ধপরিবাহীতে প্রাপ্ত যোজ্যতা ব্যান্ড হোল, ধনাত্নক আধান এবং ধনাত্মক ভরযুক্ত আপাতকণার(quasiparticle) এর অস্তিত্ব নির্দেশ করে।[]

যে কোন ক্ষেত্রে, ব্যান্ড স্ট্রাকচারটি যদি উপরে বর্ণিত সরল পরাবৃত্তিক আকার ধারণ করে তবে কার্যকর ভর এর মান অস্পষ্ট হয় না। কিন্তু বেশিরভাগ পদার্থের ক্ষেত্রে এই পরাবৃত্তিক আকার বৈধ নয়। জটিল পদার্থগুলোতে "কার্যকর ভরের" কোন একক সংজ্ঞা নেই, তবে অনেকগুলো সংজ্ঞা আছে যেগুলো কোন নির্দিষ্ট ক্ষেত্রের সাথে মিলে যায়।

মধ্যম ক্ষেত্রঃ পরাবৃত্তিক, অ্যানাইসোট্রপিক বিচ্ছুরণ সম্পর্ক

সম্পাদনা
 
ছয়টি পরিবাহী ব্যান্ড মিনিমার কাছে ধ্রুব শক্তির উপবৃত্ত। প্রতি ক্ষেত্রে, কার্যকর ভর হল m = 0.92me ("লম্বিক"; অক্ষ বরাবর ) and mt = 0.19me ("আড়াআড়ি"; দুই অক্ষে).[]

কিছু গুরুত্বপূর্ণ অর্ধপরিবাহী যেমন- সিলিকন এর ক্ষেত্রে পরিবাহী ব্যান্ডের নিম্নতম শক্তি প্রতিসম নয়। কারণ এদের ধ্রুবশক্তি পৃষ্ঠ গুলো আইসোটোপিক ক্ষেত্রের মত গোলকীয় না হয়ে উপবৃত্তাকার হয়। পরিবাহী ব্যান্ড এর ন্যুনতম মানগুলো হয়-

 

যেখানে x, y, ও zঅক্ষগুলো উপবৃত্তের প্রধান অক্ষ বরাবর থাকে এবং mx*, my*mz* হল এই অক্ষগুলোতে জড় কার্যকর ভর। k0,x, k0,y, ও k0,z দেখায় যে পরিবাহী ব্যান্ডের ন্যুনতম মানগুলো আর শূন্য তরঙ্গভেক্টরকে কেন্দ্র করে থাকে না। ( এই আপেক্ষিক ভরগুলো জড় আপেক্ষিক ভর টেন্সর এর প্রধান উপাদান, যা নিচে বর্ণনা করা হয়েছে)

এক্ষেত্রে, ইলেকট্রনের গতিকে আর মুক্ত ইলেকট্রনের সাথে সরাসরি তুলনা করা যাবে না। ইলেকট্রনের গতি এর দিকের উপর নির্ভর করবে এবং বলের দিকে এরা বিভিন্ন ঘাতের ত্বরণে ত্বরিত হবে। যদিও সিলিকনের মত ক্রিস্টালে বৈশিষ্ট্যগুলো যেমন- পরিবাহিতাকে মোটের উপর আইসোট্রোপিক বলা যায়। এর কারণ ভিন্ন ভিন্ন অক্ষে ভিন্ন কার্যকর ভর নিয়ে অনেকগুলো ভ্যালে (পরিবাহী ব্যান্ডের ন্যুনতম মান) বিন্যস্ত থাকে। এই ভ্যালেগুলোর সম্মিলিত কাজের ফলে আইসোট্রপিক পরিবাহিতা পাওয়া যায়। ভিন্ন ভিন্ন অক্ষের কার্যকর ভরগুলো নিয়ে গড় করে মুক্ত ইলেকট্রন এর মত গতি কল্পনা করা যায়। যাহোক,কি উদ্দেশ্যে গড় করছি তার উপর এই গড় করার পদ্ধতি নির্ভর করে।[]

  • জ্যামিতিক গড়ের সাথে ডিজেনারেসি গুণক g (সিলিকনে g = 6) মিলিয়ে অবস্থা ঘনত্ব এবং মোট বাহক ঘনত্ব গণনা করে ভ্যালের সংখ্যা পাওয়া যায়[]
 

(এই কার্যকর ভর অবস্থা ঘনত্বের কার্যকর ভরের অন্তর্গত যা পরে বর্ণনা করা হয়েছে)। পার-ভ্যালে অবস্থা ঘনত্ব ঈবং পার-ভ্যালে বাহক ঘনত্বের জন্য ডিজেনারেসি গুণক বাদ দেয়া হয়।

  • হারমোনিক গড়ের মাধ্যমে ড্রুড মডেলের মত পরিবাহিতা গণনার ক্ষেত্রে,
 

ড্রুড সূত্র বিক্ষেপণ সময়ের উপর নির্ভর করে যা অনেক বেশি পরিমাণে পরিবর্তিত হয়। ফলে এই কার্যকর ভর খুব কম ব্যবহৃত হয়। পরিবাহিতা তাই বাহক ঘনত্ব এবং আধান গতিশীলতার উপর নির্ভর করে।

সাধারণ ক্ষেত্র

সম্পাদনা

সাধারণভাবে বিবেচনা করলে, বিচ্ছুরণ সম্পর্ক পরাবৃত্তিক ধরে নেয়া হলে তা ভুল ফল আনতে পারে। তাই কার্যকর ভর যদি ব্যবহার করতে হয় তাহলে সুক্ষ্মভাবে সংজ্ঞায়িত করে নিতে হবে। জাড্য কার্যকর ভর টেন্সর নামে কার্যকর ভরের একটি সংজ্ঞা বহুল ব্যবহৃত হয়। আসলে এটি তরঙ্গভেক্টরের ম্যাট্রিক্স আকারে প্রকাশিত মান এবং ব্যান্ড স্ট্রাকচারের চেয়েও জটিল

জাড্য কার্যকর ভর টেন্সর

সম্পাদনা

ক্লাসিকাল পদার্থবিদ্যায় একটি কণা বল দ্বারা নিউটনের দ্বিতীয় সুত্র, a = m−1F অনুযায়ী ত্বরণ লাভ করে।

সেমিক্লাসিক্যাল ক্ষেত্রে ব্যান্ড স্ট্রাকচার থেকে প্রতিপাদনের সময় এই ব্যাখ্যাটি অনেকখানি খাটে। সেক্ষেত্রে প্রতীকগুলোকে একটু পরিবর্তন করে নিতে হয়, যেমন- ত্বরণকে গ্রুপ বেগ(গ্রুপ বেগ) পরিবর্তনের হার দ্বারা প্রতিস্থাপিত করা হয়।

 

এখানে k হল বিপরীত স্থানে ডেল অপারেটর এবং pcrystal বল থেকে প্রাপ্ত ক্রিস্টাল ভরবেগ

 

এখানে, ħ = h/2π হল পরিবর্তিত প্ল্যাঙ্ক ধ্রুবক। এই দুই সমীকরণকে একত্র করে পাওয়া যায়,

 

i তম উপাদান পৃথক করে পাই,

 

এখানে, ai হল a এর iতম উপাদান, Fj হল F এর j তম উপাদান, ki এবং kj হল k এর যথাক্রমে iতম ও jতম উপাদান, E হল প্ল্যাঙ্ক আইনস্টাইন সম্পর্ক অনুযায়ী কণার মোট শক্তি। j কে আইনস্টাইন প্রতীক ব্যবহার করে বের করা যায়। যেহেতু নিউটনের দ্বিতীয় সূত্র মহাকর্ষীয় ভর না ব্যবহার করে জড়তা ভর ব্যবহার করে সেহেতু আমরা উপরের সমীকরণ থেকে ভরের বিপরীত মান, টেন্সরকে বের করতে পারি,

 

এই টেন্সর ক্রিস্টাল জড়তার কারণে গ্রুপ বেগের যে পরিবর্তন ঘটে তা প্রকাশ করে। এর উল্টো মানকেই কার্যকর টেন্সর ভর, Minert বলে।

জাড্য কার্যকর ভর বহুলভাবে ব্যবহৃত হয়, তবে এর বৈশিষ্ট্য উপলদ্ধি করা কঠিন হয়। যেমন-

  • k সাথে সাথে কার্যকর ভর টেন্সর পরিবর্তিত হয়। এর অর্থ হল কণাটি উত্তেজিত হলে এর ভর পরিবর্তিত হয়। শুধুমাত্র পরাবৃত্তিক ক্ষেত্রে এটি ধ্রুব অবস্থায় থাকে, যা আগে আলোচনা করা হয়েছে।
  • গ্রাফিনে ইলেকট্রন বা ফোটনের মত রৈখিক বিচ্ছুরণ সম্পর্কের ক্ষেত্রে কার্যকর ভর টেন্সর অসীম হয়ে যেতে পারে।[] ( এই কণাগুলোকে অনেক সময় ভরহীন কণাও বলা হয়। অর্থাৎ এদের স্থির ভর শূন্য ধরা হয়। স্থির ভর কার্যকর ভরের একটি স্পষ্ট ক্ষেত্র।)

সাইক্লোট্রন কার্যকর ভর

সম্পাদনা

ক্লাসিকাল পদার্থবিদ্যায়, চৌম্বকক্ষেত্রে একটি আধানযুক্ত কণা চৌম্বকক্ষেত্রের অক্ষ বরাবর সর্পিলাকারে চলে। m ভর ও e আধানবিশিষ্ট কোন কণার ক্ষেত্রে পর্যায়কাল T হয়,

 

এখানে, B হল চৌম্বক ফ্লাক্স ঘনত্ব

অপ্রতিসাম্য ব্যান্ড স্ট্রাকচারের ক্ষেত্রে, কণাগুলি যদিও আর সর্পিলাকারে চলে না, তবুও তারা চৌম্বকক্ষেত্রের অক্ষ বরাবর বদ্ধ লুপে আড়াআড়ি ভাবে চলতে থাকে। যাহোক, এরকম একটি লুপ শেষ করতে যে সময় লাগে তা চৌম্বকক্ষেত্রের মানের সাথে ব্যাস্তানুপাতে পরিবর্তিত হয়। তাই উপরের সমীকরণ ব্যবহার করে পর্যায়কালের মান থেকে সাইক্লোট্রন কার্যকর ভর বের করা যায়।

কণার সেমিক্লাসিকাল গতিকে k-স্পেসের লুপের সাহায্যে বর্ণনা করা যায়। এই লুপে কণাটি ধ্রুব শক্তি ধরে রাখে, এমনকি চৌম্বকক্ষেত্রের অক্ষ বরাবর এর ভরবেগও ধ্রুব থাকে। A কে k-স্পেস এর বদ্ধ ক্ষেত্রফল বললে(এই ক্ষেত্রফল শক্তি, E এবং kB তরঙ্গভেক্টর এর উপর নির্ভর করে), শক্তির অন্তরক রুপে ব্যান্ড স্ট্রাকচারে সাইক্লোট্রন কার্যকর ভরকে যে প্রকাশ করা যায় তা দেখানো যায়।

 

সাধারণত, যেসব পরীক্ষায় সাইক্লোট্রন গতি পরিমাপ করা হয় যেমন- সাইক্লোট্রন রেজোন্যান্স, ডি হ্যাস-ভ্যান আলফেন প্রভাব প্রভৃতি, সেসব ক্ষেত্রে এসব শক্তিকে ফার্মি স্তরের কাছে ধরে নেয়া হয়।

দ্বিমাত্রিক ইলেকট্রন গ্যাসে সাইক্লোট্রন কার্যকর ভরকে শুধুমাত্র চৌম্বকক্ষেত্রের দিকের সাহায্যে প্রকাশ করা হয় এবং এক্ষেত্রে তরঙ্গভেক্টর বাদ হয়ে যায়। তাই সাইক্লোট্রন কার্যকর ভর কেবলমাত্র ভরের একটি ফাংশন এবং তাকে ওই শক্তিতে অবস্থা ঘনত্বের সাথে সম্পর্কিত করা হয় এভাবে,  , যেখানে gv হল ভ্যালে ডিজেনারেসি। ত্রিমাত্রিক পদার্থে এ ধরনের সম্পর্ক বৈধ নয়।

অবস্থা ঘনত্ব কার্যকর ভর (হালকাভাবে ডোপিত অর্ধপরিবাহকে)

সম্পাদনা
বিভিন্ন অর্ধপরিবাহকে অবস্থা ঘনত্ব কার্যকর ভর[][][][]
গ্রুপ পদার্থ ইলেকট্রন হোল
IV Si (4 K) 1.06 0.59
Si (300 K) 1.09 1.15
Ge 0.55 0.37
III-V GaAs 0.067 0.45
InSb 0.013 0.6
II-VI ZnO 0.29 1.21
ZnSe 0.17 1.44

অল্প মাত্রায় ডোপিত অর্ধপরিবাহকে, ইলেকট্রন ঘনীভবনের পরিমাণকে নিচের সমীকরণ দ্বারা প্রকাশ করা যায়,

 

এখানে, EF হল ফার্মি স্তরের শক্তি, EC হল পরিবাহী ব্যান্ডের সর্বনিম্ন শক্তি এবং NC হল ঘনীভবন সহগ যার মান তাপমাত্রার উপর নির্ভরশীল। ne যেকোন আকারের পরিবাহী ব্যান্ডের জন্য প্রযোজ্য যদি ডোপিং (EC-EF >> kT) অনেক কম হয়। ম্যাক্সওয়েল - বোল্টজম্যান পরিসংখ্যান থেকে ফার্মি - ডিরাক পরিসংখ্যান এর দিকে যাওয়ার ফলে এই ফল পাওয়া যায়।

NC এর তাপমাত্রার উপর নির্ভরশীলতাকে মডেলে পরিণত করতে কার্যকর ভর উপকারী। তাই উপরের সম্পর্কটি অনেকটা বিস্তৃত তাপমাত্রার সীমার জন্য ব্যবহার করা হয়। পরাবৃত্তিক ব্যান্ডযুক্ত আদর্শ ত্রিমাত্রিক পদার্থের ক্ষেত্রে ঘনীভবন সহগকে নিচের সমীকরণ দ্বারা প্রকাশ করা যায়।

 

সরল নয় এমন ব্যান্ড স্ট্রাকচারযুক্ত অরধপরিবাহকের ক্ষেত্রে, এই কার্যকর ভরটিকে ইলেকট্রনের অবস্থা ঘনত্ব কার্যকর ভর বলা হয়। NCকে পরাবৃত্তিক ব্যান্ডের অবস্থা ঘনত্ব থেকে উপপাদন করায় "অবস্থা ঘনত্ব কার্যকর ভর" নামটি ব্যবহার করা হয়েছে।

বাস্তবে, এভাবে পাওয়া কার্যকর ভর তাপমাত্রার সাপেক্ষে ধ্রুব থাকে না (NC,T3/2 এর সাথে একইভাবে পরিবর্তিত হয় না)। সিলিকনের ক্ষেত্রে ব্যান্ড স্ট্রাকচারের আকার পরিবর্তনের কারণে এই কার্যকর ভর শূন্য তাপমাত্রা থেকে কক্ষ তাপমাত্রার ক্ষেত্রে কয়েক শতাংশ পরিবর্তিত হয়। ইলেকট্রন-ফোননের মিথস্ক্রিয়ার কারণে ব্যান্ড স্ট্রাকচারটি এভাবে পরিবর্তিত হয়। এক্ষেত্রে তাপের সাথে ল্যাটিসের প্রসারণ গুরুত্বপূর্ণ ভূমিকা পালন করে।[]

একইভাবে, যোজ্যতা স্তরের হোলসংখ্যা এবং হোলের অবস্থা ঘনত্ব কার্যকর ভর নিম্নরুপে সংজ্ঞায়িত করা হয়।

 

এখানে, EV হল যোজ্যতা স্তরের সর্বোচ্চ শক্তি। বাস্তবিকে, শূন্য তাপমাত্রা থেকে কক্ষ তাপমাত্রার ক্ষেত্রে কার্যকর ভর অনেকখানি পরিবর্তন হয়( সিলিকনের ক্ষেত্রে দ্বিগুণ) । কারণ, অনেকগুলো যোজ্যতা ব্যান্ড একই শক্তির কাছে সর্বোচ্চ মান দেখায়।[]

পরীক্ষামূলক নির্ণয়

সম্পাদনা

সাধারণত সাইক্লোট্রন রেজোন্যান্স ব্যবহার করে কার্যকর ভর মাপা হয়। এ পদ্ধতিতে চৌম্বকক্ষেত্রে অর্ধপরিবাহকে মাইক্রোওয়েভ শোষণ একটি শীর্ষে উপনিত হয়, যখন সাইক্লোট্রন কম্পাঙ্ক মাইক্রোওয়েভ কম্পাঙ্কের সমান হয়,   । বর্তমান সময়ে আলোক নির্গমন, (ARPES), বা ডি হ্যাস- ভ্যান আলফেন প্রভাব দিয়েও কার্যকর ভর নির্ণয় করা হচ্ছে। স্থির আয়তনে নিম্ন তাপমাত্রায় ইলেকট্রনিক আপেক্ষিক তাপ,  এর ক্ষেত্রে গামা সহগ দিয়েও কার্যকর ভর অনুমান করা যায়। ফার্মি স্তরে অবস্থা ঘনত্বের কার্যকর ভরের উপর এই আপেক্ষিক তাপ নির্ভর করে। আপেক্ষিক তাপ থেকে বাহক ভর বের করার ধারণা ভারী ফার্মিয়ন পদার্থের ধারণাকে উসকে দেয়। যেহেতু বাহক সংঘর্ষ সময়কাল,   ও কার্যকর ভরের অনুপাতের উপর ইলেকট্রনের গতিশীলতা নির্ভরশীল, ট্রান্সপোর্ট পরিমাপ থেকে ভর নির্ণয় করা সম্ভব। যদিও এই পদ্ধতি অতটা বাস্তবসম্মত নয়। অর্ধপরিবাহকে বাহক ঘনত্ব, কার্যকর ভর এবং গতিশীলতা নির্ণয়ের জন্য অপটিকাল হল ইফেক্ট একটি উদীয়মান কৌশল। পরিবাহী এবং জটিল স্তরীয় পদার্থের ক্ষেত্রে অপটিকাল হল ইফেক্ট কৌশল দিয়ে কোজি-স্ট্যাটিক ইলেকট্রিক হল প্রভাবে আবেশিত তড়িৎক্ষেত্রের স্বরূপতা এবং কার্যকর ভর ও গতিশীলতা প্যারামিটারের অ্যানাইসোট্রপিকেও মুল্যায়ন করা যায়।[][১০]

গুরুত্ব

সম্পাদনা

ট্রান্সপোর্ট গণনার ক্ষেত্রে, বিশেষ করে বাহক গ্র্যাডিয়েন্ট বা চৌম্বক ক্ষেত্রের প্রভাবে ইলেকট্রন ট্রান্সপোর্ট গণনায় কার্যকর ভর ব্যবহৃত হয়। এছাড়া অর্ধপরিবাহকে বাহক ঘনত্ব এবং অবস্থা ঘনত্ব নির্ণয়ের জন্যও এটি ব্যবহৃত হয়। এই ভরগুলো সম্পর্কিত কিন্তু বিভিন্ন দিক এবং তরঙ্গভেক্টরের ভিন্নতার কারণে এরা এক নয়।

গ্রুপ IV Si ও Ge এর মত চতুস্তলকীয় পদার্থের তুলনায় গ্রুপ III-V যৌগ যেমন- GaAs ও InSb এর কার্যকর ভর অনেক কম। সবচেয়ে সাধারণ ড্রুড মডেলে ইলেকট্রন ট্রান্সপোর্ট, আধানবাহকের সর্বোচ্চ বেগ কার্যকর ভরের সাথে ব্যাস্তানুপাতে পরিবর্তিত হয়,  যেখানে   এবং   হল ইলেকট্রনের আধান। সমন্বিত বর্তনীর গতি বাহক বেগের উপর নির্ভরশীল, একারণে যেসব ক্ষেত্রে উচ্চ ব্যান্ডউইথ লাগে যেমন- মোবাইল টেলিফোনিতে সিলিকনের বদলে GaAs ও এর জাতক ব্যবহার করা হয়।[১১]

২০১৭ সালের এপ্রিলে, ওয়াশিংটন স্টেট বিশ্ববিদ্যালয়ের গবেষকরা বিচ্ছুরণ সম্পর্ক ব্যবহার করে বোস - আইনস্টাইন কনডেনসেটে ঋণাত্মক ভরবিশিষ্ট তরল আবিষ্কারের দাবি করেছেন।[১২]

পাদটিকা

সম্পাদনা
  1. Kittel, Introduction to Solid State Physics 8th edition, page 194-196
  2. Charles Kittel। op. cit.। পৃষ্ঠা 216। আইএসবিএন 0-471-11181-3 
  3. "Effective mass in semiconductors"। Ecee.colorado.edu। ২০১৭-১০-২০ তারিখে মূল থেকে আর্কাইভ করা। সংগ্রহের তারিখ ২০১৬-০৭-২৩ 
  4. Green, M. A. (১৯৯০)। "Intrinsic concentration, effective densities of states, and effective mass in silicon"। Journal of Applied Physics67 (6): 2944–2954। ডিওআই:10.1063/1.345414বিবকোড:1990JAP....67.2944G 
  5. Viktor Ariel; Amir Natan (২০১২)। "Electron Effective Mass in Graphene"। arXiv:1206.6100  [physics.gen-ph]। 
  6. S.Z. Sze, Physics of Semiconductor Devices, আইএসবিএন ০-৪৭১-০৫৬৬১-৮.
  7. W.A. Harrison, Electronic Structure and the Properties of Solids, আইএসবিএন ০-৪৮৬-৬৬০২১-৪.
  8. This site ওয়েব্যাক মেশিনে আর্কাইভকৃত ২ নভেম্বর ২০১৯ তারিখে gives the effective masses of Silicon at different temperatures.
  9. M. Schubert, Infrared Ellipsometry on Semiconductor Layer Structures: Phonons, Plasmons and Polaritons, আইএসবিএন ৩-৫৪০-২৩২৪৯-৪.
  10. Schubert, M.; Kuehne, P.; Darakchieva, V.; Hofmann, T. (২০১৬)। "The optical Hall effect - model description: tutorial"। Journal of the Optical Society of America A33: 1553। ডিওআই:10.1364/JOSAA.33.001553বিবকোড:2016JOSAA..33.1553S 
  11. Silveirinha, M. R. G.; Engheta, N. (২০১২)। "Transformation electronics: Tailoring the effective mass of electrons"। Physical Review B86 (16)। ডিওআই:10.1103/PhysRevB.86.161104বিবকোড:2012PhRvB..86p1104S 
  12. Khamehchi, K.A. (২০১৭-০৪-১০)। "Negative-Mass Hydrodynamics in a Spin-Orbit–coupled Bose-Einstein Condensate"American Physical Society118 (15)। arXiv:1612.04055 ডিওআই:10.1103/PhysRevLett.118.155301বিবকোড:2017PhRvL.118o5301K। সংগ্রহের তারিখ ১৩ এপ্রিল ২০১৭ 

তথ্যসূত্র

সম্পাদনা
  • Pastori Parravicini, G. (১৯৭৫)। Electronic States and Optical Transitions in SolidsPergamon Pressআইএসবিএন 0-08-016846-9  This book contains an exhaustive but accessible discussion of the topic with extensive comparison between calculations and experiment.
  • S. Pekar, The method of effective electron mass in crystals, Zh. Eksp. Teor. Fiz. 16, 933 (1946).

বহিঃসংযোগ

সম্পাদনা